Maintenant, la construction de notre réseau de neurones convolutifs!
model = Sequential()
model.add(Lambda(lambda x: x * 1./255., input_shape=(120, 160, 3), output_shape=(120, 160, 3)))
model.add(Conv2D(32, (3, 3), input_shape=(120, 160, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.7))
model.add(Dense(1))
model.add(Activation('sigmoid'))